Monday, August 16, 2010

History

The cryptanalytic machine code-named "Aquarius" used at Bletchley Park during WW II incorporated a hard-wired dynamic memory. Paper tape was read and the characters on it "were remembered in a dynamic store. ... The store used a large bank of capacitors, which were either charged or not, a charged capacitor representing cross (1) and an uncharged capacitor dot (0). Since the charge gradually leaked away, a periodic pulse was applied to top up those still charged (hence the term 'dynamic')".[1]

Schematic drawing of original designs of DRAM patented in 1968.

In 1964, Arnold Farber and Eugene Schlig working for IBM created a memory cell that was hard wired; using a transistor gate and tunnel diode latch, they later replaced the latch with two transistors and two resistors, which became known as the Farber-Schlig cell. In 1965, Benjamin Agusta and his team working for IBM managed to create a 16-bit silicon memory chip based on the Farber-Schlig cell, which consisted of 80 transistors, 64 resistors, and four diodes. In 1966, DRAM was invented by Dr. Robert Dennard at the IBM Thomas J. Watson Research Center and he was awarded U.S. patent number 3,387,286 in 1968. Capacitors had been used for earlier memory schemes such as the drum of the Atanasoff–Berry Computer, the Williams tube and theSelectron tube.

The Toshiba "Toscal" BC-1411 electronic calculator, which went into production in November 1965, uses a form of dynamic RAM built from discrete components.[2]

In 1969, Honeywell asked Intel to make a DRAM using a 3-transistor cell that they had developed. This became the Intel 1102 (1024x1) in early 1970. However the 1102 had many problems, prompting Intel to begin work on their own improved design (in secrecy to avoid conflict with Honeywell). This became the first commercially-available DRAM memory, the Intel 1103 (1024x1) in October 1970 (despite initial problems with low yield until the fifth revision of the masks).

The first DRAM with multiplexed row and column address lines was the Mostek MK4096 (4096x1) designed by Robert Proebsting and introduced in 1973. This addressing scheme, a radical advance, allowed it to fit into packages with fewer pins, a cost advantage that would grow with every jump in memory size. The MK4096 also proved to be a very robust design for customer applications. At the 16K density, the cost advantage increased, and the Mostek MK4116 16K DRAM achieved greater than 75% worldwide DRAM market share. However, as density increased to 64K Mostek was overtaken by Japanese DRAM manufacturers selling higher quality DRAMs using the same multiplexing scheme at below-cost prices.

No comments:

Post a Comment