Inverted lists and other methods are also used. A given database management system may provide one or more of the four models. The optimal structure depends on the natural organization of the application's data, and on the application's requirements (which include transaction rate (speed), reliability, maintainability, scalability, and cost).
The dominant model in use today is the ad hoc one embedded in SQL, despite the objections of purists who believe this model is a corruption of the relational model, since it violates several of its fundamental principles for the sake of practicality and performance. Many DBMSs also support the Open Database Connectivity API that supports a standard way for programmers to access the DBMS.
Before the database management approach, organizations relied on file processing systems to organize, store, and process data files. End users became aggravated with file processing because data is stored in many different files and each organized in a different way. Each file was specialized to be used with a specific application. Needless to say, file processing was bulky, costly and nonflexible when it came to supplying needed data accurately and promptly. Data redundancy is an issue with the file processing system because the independent data files produce duplicate data so when updates were needed each separate file would need to be updated. Another issue is the lack of data integration. The data is dependent on other data to organize and store it. Lastly, there was not any consistency or standardization of the data in a file processing system which makes maintenance difficult. For all these reasons, the database management approach was produced. Database management systems (DBMS) are designed to use one of five database structures to provide simplistic access to information stored in databases. The five database structures are hierarchical, network, relational, multidimensional and object-oriented models.
The hierarchical structure was used in early mainframe DBMS. Records’ relationships form a treelike model. This structure is simple but nonflexible because the relationship is confined to a one-to-many relationship. IBM’s IMS system and the RDM Mobile are examples of a hierarchical database system with multiple hierarchies over the same data. RDM Mobile is a newly designed embedded database for a mobile computer system. The hierarchical structure is used primary today for storing geographic information and file systems.
The network structure consists of more complex relationships. Unlike the hierarchical structure, it can relate to many records and accesses them by following one of several paths. In other words, this structure allows for many-to-many relationships.
The relational structure is the most commonly used today. It is used by mainframe, midrange and microcomputer systems. It uses two-dimensional rows and columns to store data. The tables of records can be connected by common key values. While working for IBM, E.F. Codd designed this structure in 1970. The model is not easy for the end user to run queries with because it may require a complex combination of many tables.
The multidimensional structure is similar to the relational model. The dimensions of the cube looking model have data relating to elements in each cell. This structure gives a spreadsheet like view of data. This structure is easy to maintain because records are stored as fundamental attributes, the same way they’re viewed and the structure is easy to understand. Its high performance has made it the most popular database structure when it comes to enabling online analytical processing (OLAP).
The object oriented structure has the ability to handle graphics, pictures, voice and text, types of data, without difficultly unlike the other database structures. This structure is popular for multimedia Web-based applications. It was designed to work with object-oriented programming languages such as Java.
No comments:
Post a Comment