EDO DRAM, sometimes referred to as Hyper Page Mode enabled DRAM, is similar to Fast Page Mode DRAM with the additional feature that a new access cycle can be started while keeping the data output of the previous cycle active. This allows a certain amount of overlap in operation (pipelining), allowing somewhat improved performance. It was 5% faster than Fast Page Mode DRAM, which it began to replace in 1995, when Intel introduced the 430FX chipset that supported EDO DRAM.
To be precise, EDO DRAM begins data output on the falling edge of /CAS, but does not stop the output when /CAS rises again. It holds the output valid (thus extending the data output time) until either /RAS is deasserted, or a new /CAS falling edge selects a different column address.
Single-cycle EDO has the ability to carry out a complete memory transaction in one clock cycle. Otherwise, each sequential RAM access within the same page takes two clock cycles instead of three, once the page has been selected. EDO's performance and capabilities allowed it to somewhat replace the then-slow L2 caches of PCs. It created an opportunity to reduce the immense performance loss associated with a lack of L2 cache, while making systems cheaper to build. This was also good for notebooks due to difficulties with their limited form factor, and battery life limitations. An EDO system with L2 cache was tangibly faster than the older FPM/L2 combination.
Single-cycle EDO DRAM became very popular on video cards towards the end of the 1990s. It was very low cost, yet nearly as efficient for performance as the far more costly VRAM.
Much equipment taking 72-pin SIMMs could use either FPM or EDO. Problems were possible, particularly when mixing FPM and EDO. EarlyHewlett-Packard printers had FPM RAM built in; some, but not all, models worked if additional EDO SIMMs were added.[15]
No comments:
Post a Comment